Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1083515

Transformation and Validation Methods in Allometric Remote Sensing Based Equations


Tafro, Azra; Balenović, Ivan; Jazbec, Anamarija
Transformation and Validation Methods in Allometric Remote Sensing Based Equations // Book of Abstracts 18th International Conference on Operational Research / Arnerić, Josip ; Čeh Časni, Anita (ur.).
Šibenik, Hrvatska, 2020. str. 46-47 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1083515 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Transformation and Validation Methods in Allometric Remote Sensing Based Equations

Autori
Tafro, Azra ; Balenović, Ivan ; Jazbec, Anamarija

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Book of Abstracts 18th International Conference on Operational Research / Arnerić, Josip ; Čeh Časni, Anita - , 2020, 46-47

Skup
18th International Conference on Operational Research

Mjesto i datum
Šibenik, Hrvatska, 23.-25.9.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
allometry ; nonlinear regression ; log-linear regression ; validation

Sažetak
In addition to classical (time-consuming and labor-intensive) field measurements, remote sensing methods can be used to estimate various forest attributes at individual tree, plot or stand level. Remote sensing methods can reduce field work and improve the efficiency, but the accuracy of obtained results have to be carefully tested and evaluated. In this study, plot level volume of pedunculate oak forest was estimated using metrics extracted from digital surface model derived from aerial images and normalized using digital terrain model derived from airborne laser scanning. Traditional allometric equations for volume estimation are developed using linear regression on log- transformed data, which often causes bias in the estimation when errors are not additive. Several correction methods have been proposed to varying degrees of success, depending on the quantity of interest. Additionally, smaller sample sizes can cause poor goodness of fit, and greater variance in model error estimation. In this paper, the authors study bias in volume estimation, using multiple assessment and validation methods, to propose the optimal model for this type of data.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Šumarstvo, Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-7686 - Uporaba podataka daljinskih istraživanja dobivenih različitim 3D optičkim izvorima u izmjeri šuma (3D-FORINVENT) (Balenović, Ivan, HRZZ - 2016-06) ( POIROT)

Ustanove:
Hrvatski šumarski institut, Jastrebarsko,
Šumarski fakultet, Zagreb

Profili:

Avatar Url Azra Tafro (autor)

Avatar Url Ivan Balenović (autor)

Avatar Url Anamarija Jazbec (autor)

Citiraj ovu publikaciju

Tafro, Azra; Balenović, Ivan; Jazbec, Anamarija
Transformation and Validation Methods in Allometric Remote Sensing Based Equations // Book of Abstracts 18th International Conference on Operational Research / Arnerić, Josip ; Čeh Časni, Anita (ur.).
Šibenik, Hrvatska, 2020. str. 46-47 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Tafro, A., Balenović, I. & Jazbec, A. (2020) Transformation and Validation Methods in Allometric Remote Sensing Based Equations. U: Arnerić, J. & Čeh Časni, A. (ur.)Book of Abstracts 18th International Conference on Operational Research.
@article{article, year = {2020}, pages = {46-47}, keywords = {allometry, nonlinear regression, log-linear regression, validation}, title = {Transformation and Validation Methods in Allometric Remote Sensing Based Equations}, keyword = {allometry, nonlinear regression, log-linear regression, validation}, publisherplace = {\v{S}ibenik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font