Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1083152

File Fragment Classification with Focus on OLE and OOXML classes


Skračić, Kristian; Rukavina, Filip; Miličić, Karlo; Petrović, Juraj; Pale, Predrag
File Fragment Classification with Focus on OLE and OOXML classes // 2020 Proceedings of the 43rd International Convention / Skala, Karolj (ur.).
Opatija, 2020. str. 1507-1510 doi:10.23919/MIPRO48935.2020.9245428 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)


CROSBI ID: 1083152 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
File Fragment Classification with Focus on OLE and OOXML classes

Autori
Skračić, Kristian ; Rukavina, Filip ; Miličić, Karlo ; Petrović, Juraj ; Pale, Predrag

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo

Izvornik
2020 Proceedings of the 43rd International Convention / Skala, Karolj - Opatija, 2020, 1507-1510

Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)

Mjesto i datum
Opatija, Hrvatska, 28.9.-2.10.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
file fragment classification ; file type detection ; OLE ; OOXML ; artificial neural network ; feedforward neural network

Sažetak
Classification of file fragments is a crucial step in digital forensics and determining file types based on available data fragments. Currently explored file fragment classification methods other than forensic hand-examination rely on machine learning techniques. Those methods most commonly use features based on byte frequency distribution as inputs in artificial neural networks. In this paper, some new approaches to file fragment classification are explored. Older MS Office file format files (doc, ppt, and xls), and the new MS Office format (docx, pptx, and xlsx), which were previously shown to be difficult to differentiate between, were joined into two separate higher-level classes due to similarities in the included files’ structure. Different approaches to specifically differentiating between subtypes in each of those two higherlevel classes are further explored in the paper. The results suggest small increases in classification accuracy can be achieved using the proposed approach.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Predrag Pale (autor)

Avatar Url Kristian Skračić (autor)

Avatar Url Juraj Petrović (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Skračić, Kristian; Rukavina, Filip; Miličić, Karlo; Petrović, Juraj; Pale, Predrag
File Fragment Classification with Focus on OLE and OOXML classes // 2020 Proceedings of the 43rd International Convention / Skala, Karolj (ur.).
Opatija, 2020. str. 1507-1510 doi:10.23919/MIPRO48935.2020.9245428 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
Skračić, K., Rukavina, F., Miličić, K., Petrović, J. & Pale, P. (2020) File Fragment Classification with Focus on OLE and OOXML classes. U: Skala, K. (ur.)2020 Proceedings of the 43rd International Convention doi:10.23919/MIPRO48935.2020.9245428.
@article{article, editor = {Skala, K.}, year = {2020}, pages = {1507-1510}, DOI = {10.23919/MIPRO48935.2020.9245428}, keywords = {file fragment classification, file type detection, OLE, OOXML, artificial neural network, feedforward neural network}, doi = {10.23919/MIPRO48935.2020.9245428}, title = {File Fragment Classification with Focus on OLE and OOXML classes}, keyword = {file fragment classification, file type detection, OLE, OOXML, artificial neural network, feedforward neural network}, publisherplace = {Opatija, Hrvatska} }
@article{article, editor = {Skala, K.}, year = {2020}, pages = {1507-1510}, DOI = {10.23919/MIPRO48935.2020.9245428}, keywords = {file fragment classification, file type detection, OLE, OOXML, artificial neural network, feedforward neural network}, doi = {10.23919/MIPRO48935.2020.9245428}, title = {File Fragment Classification with Focus on OLE and OOXML classes}, keyword = {file fragment classification, file type detection, OLE, OOXML, artificial neural network, feedforward neural network}, publisherplace = {Opatija, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font