Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5- Dimethylfuran: Progress and prospective (CROSBI ID 283332)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Hoang, Anh Tuan ; Nižetić, Sandro ; Ölçer, Aykut I. ; Ong, Hwai Chyuan Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5- Dimethylfuran: Progress and prospective // Fuel (Guildford), 286 (2021), 1-33. doi: 10.1016/j.fuel.2020.119337

Podaci o odgovornosti

Hoang, Anh Tuan ; Nižetić, Sandro ; Ölçer, Aykut I. ; Ong, Hwai Chyuan

engleski

Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5- Dimethylfuran: Progress and prospective

In recent years, 2, 5-Dimethylfuran (DMF) is found as a promising new biofuel generation that could be synthesized from renewable and available lignocellulosic biomass in small-to- large scale. The combustion characteristics of DMF are believed to be comparable to those of fossil fuels. Many studies have focused on the synthesis pathways of DMF from the various feedstock, while decomposition mechanism and combustion characteristics were also carefully investigated by experiments and simulations. In addition, kinetic mechanisms were developed in detail and were used to compare to quantum chemical calculations. However, the production strategy should be understood clearly to target the commercialization goal of DMF. Moreover, the decomposition mechanism through pyrolysis and oxidation reactions, flame characteristics, and spray characteristics of DMF should be completely analyzed to evaluate the characteristics of combustion and emission formation as applying DMF to the engine. In the current paper, the production progress of DMF was thoroughly detailed via catalyst reactions. More importantly, the critical route from decomposition to combustion was critically discussed based on the collection and consolidation of data achieved from experiment and the kinetic model validations aiming to improve the data fidelity, to develop the accuracy of kinetic models, and to minimize the experimental uncertainties. Finally, this work could become a motivation to perform further investigations on using DMF as a promising biofuel for the engine

2, 5-dimethylfuran ; catalyst system ; oxidation mechanism ; pyrolysis reaction ; flame characteristics ; spray characteristics

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

286

2021.

1-33

objavljeno

0016-2361

1873-7153

10.1016/j.fuel.2020.119337

Povezanost rada

Strojarstvo, Temeljne tehničke znanosti

Poveznice
Indeksiranost