Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix (CROSBI ID 282390)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Basioli, Lovro ; Tkalčević, Marija ; Bogdanović- Radović Ivančica ; Dražić, Goran ; Nadaždy, Peter ; Siffalović, Peter ; Salamon, Krešimir ; Mičetić, Maja 3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix // Nanomaterials, 10 (2020), 7; 1363, 11. doi: 10.3390/nano10071363

Podaci o odgovornosti

Basioli, Lovro ; Tkalčević, Marija ; Bogdanović- Radović Ivančica ; Dražić, Goran ; Nadaždy, Peter ; Siffalović, Peter ; Salamon, Krešimir ; Mičetić, Maja

engleski

3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix

Recently demonstrated 3D networks of Ge quantum wires in an alumina matrix, produced by a simple magnetron sputtering deposition enables the realization of nanodevices with tailored conductivity and opto-electrical properties. Their growth and ordering mechanisms as well as possibilities in the design of their structure have not been explored yet. Here, we investigate a broad range of deposition conditions leading to the formation of such quantum wire networks. The resulting structures show an extraordinary tenability of the networks’ geometrical properties. These properties are easily controllable by deposition temperature and Ge concentration. The network’s geometry is shown to retain the same basic structure, adjusting its parameters according to Ge concentration in the material. In addition, the networks’ growth and ordering mechanisms are explained. Furthermore, optical measurements demonstrate that the presented networks show strong confinement effects controllable by their geometrical parameters. Interestingly, energy shift is the largest for the longest quantum wires, and quantum wire length is the main parameter for control of confinement. Presented results demonstrate a method to produce unique materials with designable properties by a simple self-assembled growth method and reveal a self-assembling growth mechanism of novel 3D ordered Ge nanostructures with highly designable optical properties.

Ge quantum wires ; 3D ordering ; self-assembly ; quantum wire network ; quantum confinement

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

10 (7)

2020.

1363

11

objavljeno

2079-4991

10.3390/nano10071363

Povezanost rada

Fizika, Interdisciplinarne prirodne znanosti

Poveznice
Indeksiranost