Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source (CROSBI ID 282176)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Križanović, Stela ; Stanzer, Damir ; Mrvčić, Jasna ; Hanousek-Čiča, Karla ; Kralj, Elizabeta ; Čanadi Jurešić, Gordana Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source // Food technology and biotechnology, 58 (2020), 2; 203-213. doi: 10.17113/ftb.58.02.20.6540

Podaci o odgovornosti

Križanović, Stela ; Stanzer, Damir ; Mrvčić, Jasna ; Hanousek-Čiča, Karla ; Kralj, Elizabeta ; Čanadi Jurešić, Gordana

engleski

Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source

Research background. In this study the content and composition of lipids in ergosterol-reduced Sheffersomyces stipitis M12 strain grown on glycerol as a carbon source is determined. Blocking the ergosterol synthesis route in yeast cells is a recently proposed method for increasing S-adenosyl-l-methionine (SAM) production. Experimental approach. The batch cultivation of M12 yeast was carried out under aerobic conditions in a laboratory bioreactor with glycerol as carbon source, and with pulsed addition of methionine. Glycerol and SAM content were monitored by high-performance liquid chromatography, while fatty acid composition of different lipid classes, separated by solid phase extraction, was determined by gas chromatography. Results and conclusion. Despite the reduced amount of ergosterol in yeast cells, thanks to the reorganized lipid metabolism, M12 strain achieved high biomass yield and SAM pro-duction. Neutral lipids prevailed (making more than 75 % of total lipids), but their content and composition differed significantly in the two tested types of yeast. Unsaturated and C18 fatty acids prevailed in both the M12 strain and wild type. In all fractions except free fatty acids, the index of unsaturation in M12 strain was lower than in the wild strain. Our tested strain adjusts itself by changing the content of lipids (mainly phospholipids, ster-ols and sterol esters), and with desaturation adjustments, to maintain proper functioning and fulfil increased energy needs. Novelty and scientific contribution. Reorganization of S. stipitis lipid composition caused by blocking the metabolic pathway of ergosterol synthesis was presented. A simple scheme of actual lipid metabolism during active SAM production in S. stipitis, grown on glycerol was constructed and shown. This fundamental knowledge of lipid metabolic pathways will be a helpful tool in improving S. stipitis as an expression host and a model organism, opening new perspectives for its applied research.

lipid composition ; Sheffersomyces stipitis ; S-adenosyl-l-methionine produc-tion ; lipid metabolism scheme

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

58 (2)

2020.

203-213

objavljeno

1330-9862

1334-2606

10.17113/ftb.58.02.20.6540

Povezanost rada

Biotehnologija, Interdisciplinarne biotehničke znanosti

Poveznice
Indeksiranost