Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1061085

Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images


Radočaj, Dorijan; Jurišić, Mladen; Gašparović, Mateo; Plaščak, Ivan
Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images // Remote sensing, 12 (2020), 9; 1463, 26 doi:10.3390/rs12091463 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1061085 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images

Autori
Radočaj, Dorijan ; Jurišić, Mladen ; Gašparović, Mateo ; Plaščak, Ivan

Izvornik
Remote sensing (2072-4292) 12 (2020), 9; 1463, 26

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
AHP ; standardization ; NDVI ; fuzzy algorithms ; k-means ; FAO suitability classification

Sažetak
Soybean is regarded as one of the most produced crops in the world, presenting a source of high-quality protein for human and animal diets. The general objective of the study was to determine the optimal soybean land suitability and conduct its mapping based on the multicriteria analysis. The multicriteria analysis was based on Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) integration, using Sentinel-2 multitemporal images for suitability validation. The study area covered Osijek- Baranja County, a 4155 km2 area located in eastern Croatia. Three criteria standardization methods (fuzzy, stepwise and linear) were evaluated for soybean land suitability calculation. The delineation of soybean land suitability classes was performed by k-means unsupervised classification. An independent accuracy assessment of calculated suitability values was performed by a novel approach with peak Normalized Difference Vegetation Index (NDVI) values, derived from four Sentinel-2 multispectral satellite images. Fuzzy standardization with the combination of soil and climate criteria produced the most accurate suitability values, having the top coefficient of determination of 0.8438. A total of 14.5% of the study area (602 km2) was determined as the most suitable class for soybean cultivation based on k-means classification results, while 64.3% resulted in some degree of suitability.

Izvorni jezik
Engleski

Znanstvena područja
Geodezija, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Ustanove
Geodetski fakultet, Zagreb,
Fakultet agrobiotehničkih znanosti Osijek

Citiraj ovu publikaciju

Radočaj, Dorijan; Jurišić, Mladen; Gašparović, Mateo; Plaščak, Ivan
Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images // Remote sensing, 12 (2020), 9; 1463, 26 doi:10.3390/rs12091463 (međunarodna recenzija, članak, znanstveni)
Radočaj, D., Jurišić, M., Gašparović, M. & Plaščak, I. (2020) Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images. Remote sensing, 12 (9), 1463, 26 doi:10.3390/rs12091463.
@article{article, year = {2020}, pages = {26}, DOI = {10.3390/rs12091463}, chapter = {1463}, keywords = {AHP, standardization, NDVI, fuzzy algorithms, k-means, FAO suitability classification}, journal = {Remote sensing}, doi = {10.3390/rs12091463}, volume = {12}, number = {9}, issn = {2072-4292}, title = {Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based Multicriteria Analysis and Sentinel-2 Multitemporal Images}, keyword = {AHP, standardization, NDVI, fuzzy algorithms, k-means, FAO suitability classification}, chapternumber = {1463} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati