Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 10560

Two Methods for ICH Segmentation


Lončarić, Sven; Ćosić, Dubravko
Two Methods for ICH Segmentation // 11th International Symposium on Biomedical Engineering ’ 96 : Proceedings / Šantić Ante (ur.).
Zagreb: KoREMA, 1996. str. 63-66 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 10560 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Two Methods for ICH Segmentation

Autori
Lončarić, Sven ; Ćosić, Dubravko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
11th International Symposium on Biomedical Engineering ’ 96 : Proceedings / Šantić Ante - Zagreb : KoREMA, 1996, 63-66

ISBN
953-6037-20-3

Skup
International Symposium on Biomedical Engineering (11 ; 1996)

Mjesto i datum
Zagreb, Hrvatska, 07-09.11.1996

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
analiza slike; segmentacija slike; medicinske slike; kompjuterska tomografija
(image analysis; image segmentation; medical imaging; CT imaging)

Sažetak
This paper presents and compares two methods for automatic segmentation of computed tomography (CT) head images of human spontaneous intracerebral brain hemorrhage (ICH). Both methods have a hierarchical structure with two-level: the higher and the lower level. The first method is based on unsupervised fuzzy C-means (UFCM) and image labeling algorithm. The second method is based on UFCM and rule-based systems. The methods segment the input CT image at the higher level into a number of spatially localized regions having uniform brightness. The UFCM algorithm is used to break the input CT images. A label from the predefined label set is assigned to each of the regions obtained by UFCM. The first method performs labeling using backtracking tree search as an image labeling algorithm while the second method uses a rule-based system. The label set is composed of these labels: background, skull, brain, ICH, and calcifications. The lower segmentation level uses results of the higher segmentation level to perform further segmentation of the brain region and localization of fine structures in the brain region such as edema region. The UFCM algorithm is used by the first method to segment brain region into the edema region, ventricle, and the rest of the brain. The second method uses rule-based system to refine the ICH region and to localize the edema region. The methods have been compared and tested on real CT head images.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036024

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Sven Lončarić (autor)


Citiraj ovu publikaciju:

Lončarić, Sven; Ćosić, Dubravko
Two Methods for ICH Segmentation // 11th International Symposium on Biomedical Engineering ’ 96 : Proceedings / Šantić Ante (ur.).
Zagreb: KoREMA, 1996. str. 63-66 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Lončarić, S. & Ćosić, D. (1996) Two Methods for ICH Segmentation. U: Šantić Ante (ur.)11th International Symposium on Biomedical Engineering ’ 96 : Proceedings.
@article{article, year = {1996}, pages = {63-66}, keywords = {analiza slike, segmentacija slike, medicinske slike, kompjuterska tomografija}, isbn = {953-6037-20-3}, title = {Two Methods for ICH Segmentation}, keyword = {analiza slike, segmentacija slike, medicinske slike, kompjuterska tomografija}, publisher = {KoREMA}, publisherplace = {Zagreb, Hrvatska} }
@article{article, year = {1996}, pages = {63-66}, keywords = {image analysis, image segmentation, medical imaging, CT imaging}, isbn = {953-6037-20-3}, title = {Two Methods for ICH Segmentation}, keyword = {image analysis, image segmentation, medical imaging, CT imaging}, publisher = {KoREMA}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font