Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1050703

Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings


Galić, Vlatko; Mazur, Maja; Brkić, Andrija; Brkić, Josip; Jambrović, Antun; Zdunić, Zvonimir; Šimić, Domagoj
Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings // Plants, 9 (2020), 2; 1-18 doi:10.3390/plants9020275 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1050703 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings

Autori
Galić, Vlatko ; Mazur, Maja ; Brkić, Andrija ; Brkić, Josip ; Jambrović, Antun ; Zdunić, Zvonimir ; Šimić, Domagoj

Izvornik
Plants (2223-7747) 9 (2020), 2; 1-18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
maize ; association mapping ; kernel weight ; water deficit ; genomic prediction

Sažetak
Background: The seedling stage has received little attention in maize breeding to identify genotypes tolerant to water deficit. The aim of this study is to evaluate incorporation of seed weight (expressed as hundred kernel weight, HKW) as a covariate into genomic association and prediction studies for three biomass traits in a panel of elite inbred lines challenged by water withholding at seedling stage. Methods: 109 genotyped-by- sequencing (GBS) elite maize inbreds were phenotyped for HKW and planted in controlled conditions (16/8 day/night, 25 C, 50% RH, 200 Mol/m2/s) in trays filled with soil. Plants in control (C) were watered every two days, while watering was stopped for 10 days in water withholding (WW). Fresh weight (FW), dry weight (DW), and dry matter content (DMC) were measured. Results: Adding HKW as a covariate increased the power of detection of associations in FW and DW by 44% and increased genomic prediction accuracy in C and decreased in WW. Conclusions: Seed weight was e ectively incorporated into association studies for biomass traits in maize seedlings, whereas the incorporation into genomic predictions, particularly in water-stressed plants, was not worthwhile.

Izvorni jezik
Engleski

Znanstvena područja
Biologija, Poljoprivreda (agronomija)



POVEZANOST RADA


Projekti:
KK.01.1.1.01.0005 - Znanstveni centar izvrsnosti za bioraznolikost i molekularno oplemenjivanje bilja (ZCI CroP-BioDiv) (Šatović, Zlatko; Liber, Zlatko, EK - KK.01.1.1.01) ( POIROT)

Ustanove:
Poljoprivredni institut Osijek

Citiraj ovu publikaciju:

Galić, Vlatko; Mazur, Maja; Brkić, Andrija; Brkić, Josip; Jambrović, Antun; Zdunić, Zvonimir; Šimić, Domagoj
Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings // Plants, 9 (2020), 2; 1-18 doi:10.3390/plants9020275 (međunarodna recenzija, članak, znanstveni)
Galić, V., Mazur, M., Brkić, A., Brkić, J., Jambrović, A., Zdunić, Z. & Šimić, D. (2020) Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings. Plants, 9 (2), 1-18 doi:10.3390/plants9020275.
@article{article, year = {2020}, pages = {1-18}, DOI = {10.3390/plants9020275}, keywords = {maize, association mapping, kernel weight, water deficit, genomic prediction}, journal = {Plants}, doi = {10.3390/plants9020275}, volume = {9}, number = {2}, issn = {2223-7747}, title = {Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings}, keyword = {maize, association mapping, kernel weight, water deficit, genomic prediction} }
@article{article, year = {2020}, pages = {1-18}, DOI = {10.3390/plants9020275}, keywords = {maize, association mapping, kernel weight, water deficit, genomic prediction}, journal = {Plants}, doi = {10.3390/plants9020275}, volume = {9}, number = {2}, issn = {2223-7747}, title = {Seed Weight as a Covariate in Association and Prediction Studies for Biomass Traits in Maize Seedlings}, keyword = {maize, association mapping, kernel weight, water deficit, genomic prediction} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font