Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic a- aminobutyrate and its fluorinated analogues (CROSBI ID 275365)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Živković, Igor ; Moschner, Johann ; Koksch, Beate ; Gruić Sovulj, Ita Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic a- aminobutyrate and its fluorinated analogues // The FEBS journal, 287 (2020), 800-813. doi: 10.1111/febs.15053

Podaci o odgovornosti

Živković, Igor ; Moschner, Johann ; Koksch, Beate ; Gruić Sovulj, Ita

engleski

Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic a- aminobutyrate and its fluorinated analogues

Isoleucyl-tRNA synthetase (IleRS) is a paradigm for understanding how specificity against smaller hydrophobic substrates evolved in both the synthetic and editing reactions. IleRS misactivates nonproteinogenic norvaline (Nva) and proteinogenic valine (Val), with a 200-fold lower efficiency than the cognate isoleucine (Ile). Translational errors are, however, prevented by IleRS hydrolytic editing. Nva and Val are both smaller than Ile by a single methylene group. How does the removal of one additional methylene group affects IleRS specificity? We found that the nonproteinogenic a-aminobutyrate (Abu) is activated 30-fold less efficiently than Nva and Val, indicating that the removal of the second methylene group comes with a lower penalty. As with Nva and Val, discrimination against Abu predominantly originated from a higher KM. To examine whether increased hydrophobicity could compensate for the loss of van der Waals interactions, we tested fluorinated Abu analogues. We found that fluorination further hampered activation by IleRS, and even more so by the evolutionary-related ValRS. This suggests that hydrophobicity is not a main driving force of substrate binding in these enzymes. Finally, a discrimination factor of 7100 suggests that IleRS is not expected to edit Abu. However, we found that the IleRS editing domain hydrolyzes Abu-tRNA Ile with a rate of 40 s -1 and the introduction of fluorine did not slow down the hydrolysis. This raises interesting questions regarding the mechanism of specificity of the editing domain and its evolution. Understanding what shapes IleRS specificity is also of importance for reengineering translation to accommodate artificial substrates including fluorinated amino acids.

aminoacyl-tRNA synthetase ; fluorinated amino acids ; hydrophobicity ; nonproteinogenic amino acids ; proofreading

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

287

2020.

800-813

objavljeno

1742-464X

1742-4658

10.1111/febs.15053

Povezanost rada

Biologija, Kemija

Poveznice
Indeksiranost