Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

The use of PWHM and Mie methods in estimation of colloidal silver particle size obtained by chemical precipitation with sodium borohydride (CROSBI ID 272857)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Barbir, Damir ; Dabić, Pero ; Meheš, Mario The use of PWHM and Mie methods in estimation of colloidal silver particle size obtained by chemical precipitation with sodium borohydride // Hemijska industrija, 73 (2019), 6; 397-404. doi: 10.2298/hemind190719031b

Podaci o odgovornosti

Barbir, Damir ; Dabić, Pero ; Meheš, Mario

engleski

The use of PWHM and Mie methods in estimation of colloidal silver particle size obtained by chemical precipitation with sodium borohydride

Unique antibacterial properties of silver have been known since the time of Egyptian pharaohs. With the discovery of antibiotics at the beginning of the twentieth century, silver is mostly pushed out from conventional medicine. However, with the excessive use of antibiotics, antibiotic-resistant super bacteria have appeared. Therefore, there is an increased interest in studying the antibacterial effects of colloidal silver. In this paper, the influence of various concentrations of silver nitrate on formation of colloidal silver particles in the solution was investigated. Colloidal silver was prepared by a chemical precipitation method using sodium borohydride as a reducing agent. As influence factors, color of the solution, Tyndall effect, UV/Vis absorption, and nanoparticle size estimated by PWHM (Peak Width at Half Maximum) and Mie methods were used. By increasing the silver concentration, color of the solution ranged from light yellow to dark yellow. All solutions showed Tyndall's effect equally. By the UV/Vis analysis it was found that the solutions absorbed radiation in the wavelength range 390-402 nm, and the intensity increased with increasing silver nitrate concentrations. By the PWHM and Mie methods silver nanoparticle sizes were estimated in the range 12-20 nm.

silver nanoparticles ; UV/Vis spectroscopy, Tyndall's effect, colloid, absorption, reducing agent

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

73 (6)

2019.

397-404

objavljeno

0367-598X

10.2298/hemind190719031b

Povezanost rada

Kemijsko inženjerstvo

Poveznice
Indeksiranost