Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments (CROSBI ID 271774)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Milaković, Milena ; Vestergaard, Gisle ; González-Plaza, Juan Jose ; Petrić, Ines ; Kosić-Vukšić, Josipa ; Senta, Ivan ; Kublik, Susanne ; Schloter, Michael ; Udiković-Kolić, Nikolina Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments // Science of the total environment, 706 (2020), 136001, 9. doi: 10.1016/j.scitotenv.2019.136001

Podaci o odgovornosti

Milaković, Milena ; Vestergaard, Gisle ; González-Plaza, Juan Jose ; Petrić, Ines ; Kosić-Vukšić, Josipa ; Senta, Ivan ; Kublik, Susanne ; Schloter, Michael ; Udiković-Kolić, Nikolina

engleski

Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments

Environmental discharges of very high (mg/L) antibiotic levels from pharmaceutical production contributed to the selection, spread and persistence of antibiotic resistance. However, the effects of less antibiotic- polluted effluents (μg/L) from drug-formulation on exposed aquatic microbial communities are still scarce. Here we analyzed formulation effluents and sediments from the receiving creek collected at the discharge site (DW0), upstream (UP) and 3000 m downstream of discharge (DW3000) during winter and summer season. Chemical analyses indicated the largest amounts of trimethoprim (up to 5.08 mg/kg) and azithromycin (up to 0.39 mg/kg) at DW0, but sulfonamides accumulated at DW3000 (total up to 1.17 mg/kg). Quantitative PCR revealed significantly increased relative abundance of various antibiotic resistance genes (ARGs) against β-lactams, macrolides, sulfonamides, trimethoprim and tetracyclines in sediments from DW0, despite relatively high background levels of some ARGs already at UP site. However, only sulfonamide (sul2) and macrolide ARG subtypes (mphG and msrE) were still elevated at DW3000 compared to UP. Sequencing of 16S rRNA genes revealed pronounced changes in the sediment bacterial community composition from both DW sites compared to UP site, regardless of the season. Numerous taxa with increased relative abundance at DW0 decreased to background levels at DW3000, suggesting die- off or lack of transport of effluent- originating bacteria. In contrast, various taxa that were more abundant in sediments than in effluents increased in relative abundance at DW3000 but not at DW0, possibly due to selection imposed by high sulfonamide levels. Network analysis revealed strong correlation between some clinically relevant ARGs (e.g. blaGES, blaOXA, ermB, tet39, sul2) and taxa with elevated abundance at DW sites, and known to harbour opportunistic pathogens, such as Acinetobacter, Arcobacter, Aeromonas and Shewanella. Our results demonstrate the necessity for improved management of pharmaceutical and rural waste disposal for mitigating the increasing problems with antibiotic resistance.

Antibiotic manufacturing ; Sediment ; Pollution ; Bacterial community ; Antibiotic resistance genes

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

706

2020.

136001

9

objavljeno

0048-9697

1879-1026

10.1016/j.scitotenv.2019.136001

Povezanost rada

Interdisciplinarne prirodne znanosti

Poveznice
Indeksiranost