Napredna pretraga

Pregled bibliografske jedinice broj: 1030461

The hypermetric cone and polytope on graphs


Dutour Sikirić, Mathieu
The hypermetric cone and polytope on graphs // Chebyshevskii Sbornik, 20 (2019), 2; 160-168 (međunarodna recenzija, članak, znanstveni)


Naslov
The hypermetric cone and polytope on graphs

Autori
Dutour Sikirić, Mathieu

Izvornik
Chebyshevskii Sbornik (2226-8383) 20 (2019), 2; 160-168

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Hypermetric cone ; graph ; minor

Sažetak
The hypermetric cone was defined in DGL92 and was extensively studied by Michel Deza and his collaborators. Another key interest of him was cut and metric polytope which he considered in his last works in the case of graphs. Here we combine both interest by considering the hypermetric on graphs. We define them for any graph and give an algorithm for computing the extreme rays and facets of hypermetric cone on graphs. We compute the hypermetric cone for the first non-trivial case of K7-{;e};. We also compute the hypermetric cone in the case of graphs with no K5 minor.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove
Institut "Ruđer Bošković", Zagreb

Autor s matičnim brojem:
Mathieu Dutour Sikirić, (279085)

Časopis indeksira:


  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet