Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Thermal Management of Edge-Cooled 1 kW Portable Proton Exchange Membrane Fuel Cell Stack (CROSBI ID 269946)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Tolj, Ivan ; Penga, Željko ; Vukičević, Damir ; Barbir, Frano Thermal Management of Edge-Cooled 1 kW Portable Proton Exchange Membrane Fuel Cell Stack // Applied energy, 257 (2020), 114038, 19. doi: 10.1016/j.apenergy.2019.114038

Podaci o odgovornosti

Tolj, Ivan ; Penga, Željko ; Vukičević, Damir ; Barbir, Frano

engleski

Thermal Management of Edge-Cooled 1 kW Portable Proton Exchange Membrane Fuel Cell Stack

Comprehensive numerical analyses are conducted to study the influence of thermal management on performance of 1 kW edge-cooled proton exchange membrane fuel cell stack without external humidification. The experimental stack and numerical three- dimensional computational fluid dynamics model are characterized by several novelty aspects. Two numerical approaches are considered and compared for a prescribed load profile: (i) lumped model and novel (ii) real- time transient computational fluid dynamics model incorporating realistic modeling of forced air convection on the edge- cooling of the stack. The novelty of the developed computational fluid dynamics model is the capability to give insight in the transient results in only a fraction of time vs. experimental testing (40 mins vs. 4 hours) and other computational fluid dynamics models of fuel cells which are only capable of steady- state analysis. The developed computational fluid dynamics model is used to study the influence of (i) bipolar plate materials (ii) operating delta pressure along the flow field and (iii) different cooling fin configurations on the water and heat balance inside the stack. The results indicate that (i) maximal and average temperatures of the stack are almost linearly correlated to the thermal conductivity of bipolar plate materials and maximal temperatures can be significantly higher (ii) the operating delta pressure can be manipulated to increase the performance of the stack and (iii) the cooling fin redesign has major influence on the overall temperature uniformity across the stack. Additionally, the heat transfer between the stack and metal hydride tank is studied.

PEM fuel cell ; Portable stack ; Edge cooling ; Water and heat management ; Transient analysis

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

257

2020.

114038

19

objavljeno

0306-2619

1872-9118

10.1016/j.apenergy.2019.114038

Povezanost rada

Interdisciplinarne tehničke znanosti, Kemijsko inženjerstvo, Strojarstvo

Poveznice
Indeksiranost