Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Codling Moth Wing Morphology Changes Due to Insecticide Resistance (CROSBI ID 269182)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Pajač Živković, Ivana ; Benitez, Hugo Alejandro ; Barić, Božena ; Drmić, Zrinka ; Kadoić Balaško, Martina ; Lemić, Darija ; Dominguez Davila, Jose Humberto ; Mikac, Katarina Maryann ; Bažok, Renata Codling Moth Wing Morphology Changes Due to Insecticide Resistance // Insects, 10 (2019), 310, 13. doi: 10.3390/insects10100310

Podaci o odgovornosti

Pajač Živković, Ivana ; Benitez, Hugo Alejandro ; Barić, Božena ; Drmić, Zrinka ; Kadoić Balaško, Martina ; Lemić, Darija ; Dominguez Davila, Jose Humberto ; Mikac, Katarina Maryann ; Bažok, Renata

engleski

Codling Moth Wing Morphology Changes Due to Insecticide Resistance

The codling moth (CM) (Cydia pomonella L.) is the most important apple pest in Croatia and Europe. Owing to its economic importance, it is a highly controlled species and the intense selection pressure the species is under has likely caused it to change its phenotype in response. Intensive application of chemical- based insecticide treatments for the control of CM has led to resistance development. In this study, the forewing morphologies of 294 CM (11 populations) were investigated using geometric morphometric procedures based on the venation patterns of 18 landmarks. Finite element method (FEM) was also used to further investigate the dispersal capabilities of moths by modelling wing deformation versus wind speed. Three treatments were investigated and comprised populations from integrated and ecological (susceptible) orchards and laboratory-reared non-resistant populations. Forewing shape differences were found among the three treatment populations investigated. Across all three population treatments, the movement of landmarks 1, 7, 8, 9, and 12 drove the wing shape differences found. A reliable pattern of differences in forewing shape as related to control practice type was observed. FEM revealed that as wind speed (m/s−1) increased, so too did wing deformation (mm) for CM from each of the three treatments modelled. CM from the ecological orchards displayed the least deformation followed by integrated then laboratory-reared CM, which had the highest wing deformation at the highest wind speeds. This study presents an affordable and accessible technique that reliably demonstrates wing shape differences, and thus its use as a population biomarker to detect resistance should be further investigated.

geometric morphometrics ; finite element method ; forewing shape ; biomarker

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

10

2019.

310

13

objavljeno

nije evidentirano

2075-4450

10.3390/insects10100310

Povezanost rada

Poljoprivreda (agronomija)

Poveznice
Indeksiranost