Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

A finite element implementation of a growth and remodeling model for soft biological tissues: Verification and application to abdominal aortic aneurysms (CROSBI ID 267503)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Horvat, Nino ; Virag, Lana ; Holzapfel, Gerhard A. ; Sorić, Jurica ; Karšaj, Igor A finite element implementation of a growth and remodeling model for soft biological tissues: Verification and application to abdominal aortic aneurysms // Computer methods in applied mechanics and engineering, 352 (2019), 586-605. doi: 10.1016/j.cma.2019.04.041

Podaci o odgovornosti

Horvat, Nino ; Virag, Lana ; Holzapfel, Gerhard A. ; Sorić, Jurica ; Karšaj, Igor

engleski

A finite element implementation of a growth and remodeling model for soft biological tissues: Verification and application to abdominal aortic aneurysms

The general framework for growth and remodeling (G&R) of soft biological tissues shows a great potential for expanding our current understanding of biochemical and biomechanical processes, and to predict disease progression. Yet, its use is held up by the lack of a reliable and verified 3D finite element (FE) implementation capable of describing G&R processes of soft biological tissues. Thus, in this study we present the implementation of a 3D constrained mixture G&R model in a FE analysis program. In contrast to traditional finite strain FE formulations, we show that the volumetric–isochoric decomposition not only introduces numerical problems and instabilities, it also provides unphysical results. As a verification of the implementation we present adaptations of realistic aorta models to changes in the hemodynamics, i.e. changes in blood flow and pressure. The obtained results show a correspondence with the membrane theory and with clinical expectations. Application to a fusiform aneurysm model provided realistic growth rates, evolution of thickness and stress, whereas changes in the kinetic parameters show good agreement to animal models. Finally, we present simulated expansions of an asymmetric fusiform aneurysm. Non-axisymmetric elastin degradation increased the curvature of the aorta, which is characteristic for abdominal aortic aneurysms

finite elements ; vascular adaptation ; collagen turnover ; fusiform aneurysm ; asymmetric fusiform aneurysm ; growth and remodeling

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

352

2019.

586-605

objavljeno

0045-7825

1879-2138

10.1016/j.cma.2019.04.041

Povezanost rada

Strojarstvo

Poveznice
Indeksiranost