Pregled bibliografske jedinice broj: 1011896
Pedestrian Tracking by Probabilistic Data Association and Correspondence Embeddings
Pedestrian Tracking by Probabilistic Data Association and Correspondence Embeddings // International Conference on Information Fusion (FUSION)
Ottawa, Kanada, 2019. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1011896 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Pedestrian Tracking by Probabilistic Data Association and Correspondence Embeddings
Autori
Bićanić, Borna ; Oršić, Marin ; Marković, Ivan ; Šegvić, Siniša ; Petrović, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
International Conference on Information Fusion (FUSION)
/ - , 2019, 1-6
Skup
22nd International Conference on Information Fusion (FUSION 2019)
Mjesto i datum
Ottawa, Kanada, 02.07.2019. - 05.07.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Pedestrian Tracking ; Deep Neural Networks ; JIPDAF ; Multitarget Tracking
Sažetak
This paper studies the interplay between kinematics (position and velocity) and appearance cues for establishing correspondences in multi-target pedestrian tracking. We investigate tracking-by-detection approaches based on a deep learning detector, joint integrated probabilistic data association (JIPDA), and appearance-based tracking of deep correspondence embeddings. We first addressed the fixed-camera setup by fine-tuning a convolutional detector for accurate pedestrian detection and combining it with kinematic-only JIPDA. The resulting submission ranked first on the 3DMOT2015 benchmark. However, in sequences with a moving camera and unknown ego-motion, we achieved the best results by replacing kinematic cues with global nearest neighbor tracking of deep correspondence embeddings. We trained the embeddings by fine-tuning features from the second block of ResNet-18 using angular loss extended by a margin term. We note that integrating deep correspondence embeddings directly in JIPDA did not bring significant improvement. It appears that geometry of deep correspondence embeddings for soft data association needs further investigation in order to obtain the best from both worlds.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Marin Oršić
(autor)
Borna Bićanić
(autor)
Ivan Petrović
(autor)
Siniša Šegvić
(autor)
Ivan Marković
(autor)