Napredna pretraga

Pregled bibliografske jedinice broj: 1007674

Exergy analysis of steam turbine governing valve from a super critical thermal power plant


Mrzljak, Vedran; Orović, Josip; Poljak, Igor; Lorencin, Ivan
Exergy analysis of steam turbine governing valve from a super critical thermal power plant // XXVII INTERNATIONAL SCIENTIFIC CONFERENCE trans & MOTAUTO ’19 - PROCEEDINGS / Kolev, Petar (ur.).
Sofia: Scientific technical union of mechanical engineering “Industry-4.0”, 2019. str. 99-102 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Exergy analysis of steam turbine governing valve from a super critical thermal power plant

Autori
Mrzljak, Vedran ; Orović, Josip ; Poljak, Igor ; Lorencin, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
XXVII INTERNATIONAL SCIENTIFIC CONFERENCE trans & MOTAUTO ’19 - PROCEEDINGS / Kolev, Petar - Sofia : Scientific technical union of mechanical engineering “Industry-4.0”, 2019, 99-102

Skup
XXVII INTERNATIONAL SCIENTIFIC CONFERENCE trans & MOTAUTO ’19

Mjesto i datum
Varna, Bugarska, 17-20.06.2019

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Governing valve ; Exergy analysis ; Ambient temperature ; Super critical power plant

Sažetak
Exergy analysis of steam turbine governing valve from a super critical thermal power plant is presented in this paper. Governing valve was analyzed not only at the highest, but also on two partial steam system loads. The lowest valve exergy destruction is 3598 kW and is obtained at the highest steam system load, while at partial loads of 80% and 60% valve exergy destruction is 13550 kW and 21360 kW. Valve exergy efficiency increases with an increase in system load, from 95.58% at 60% of load to 97.87% at 80% of load. At the highest load, valve exergy efficiency is the highest and is 99.57%. Change in valve steam specific entropy increment (difference in steam specific entropy between valve outlet and inlet) can be used as a tool for quick assessment of valve losses change. The ambient temperature influence on governing valve exergy analysis is low, especially in the highest steam system load where the majority of valve operation can be expected.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo, Tehnologija prometa i transport



POVEZANOST RADA


Projekt / tema
IP-2018-01-3739

Ustanove
Tehnički fakultet, Rijeka,
Sveučilište u Zadru