Napredna pretraga

Pregled bibliografske jedinice broj: 1004321

3D structure–2D plate interaction model


Ljulj, Matko; Tambača, Josip
3D structure–2D plate interaction model // Mathematics and mechanics of solids, 24 (2019), 10; 3354-3377 doi:10.1177/1081286519846202 (međunarodna recenzija, članak, znanstveni)


Naslov
3D structure–2D plate interaction model

Autori
Ljulj, Matko ; Tambača, Josip

Izvornik
Mathematics and mechanics of solids (1081-2865) 24 (2019), 10; 3354-3377

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Linearized elasticity, 3D structure, 2D plate model, interaction model, justification

Sažetak
In this paper, we derive models for the interaction of a linearized three-dimensional elastic structure with a thin elastic layer of possibly different material attached to it. Rigorous derivation is performed by considering a thin three-dimensional layer and the asymptotics of the solution of the full remaining three-dimensional problem when the thickness ε of the thin layer tends to zero. Furthermore, the attached thin material is assumed to have the elasticity coefficients which are of order 1∕εp, for p≥0 with respect to the coefficients of the three-dimensional body. In the limit, five different models are obtained with respect to different choices of p, namely p∈[0, 1⟩, p=1, p∈⟨1, 3⟩, p=3, and p∈⟨3, ∞⟩. Furthermore a three-dimensional–two- dimensional model is proposed that has the same asymptotics as the original three-dimensional problem. This is convenient for applications because one does not have to decide in advance which limit model to use.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
HRZZ-IP-2018-01-2735 - Asimptotička analiza rubnih problema u mehanici kontinuuma (Eduard Marušić-Paloka, )

Ustanove
Prirodoslovno-matematički fakultet, Zagreb

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet


Citati