Pregled bibliografske jedinice broj: 1000722
Application of machine learning for herbicide characterization
Application of machine learning for herbicide characterization // Book Of Abstracts / Darko, Babić ; Danijela, Barić ; Marko, Cvitaš ; Ines, Despotović ; Nađa, Došlić ; Marko, Hanževački ; Tomica, Hrenar ; Borislav, Kovačević ; Ivan, Ljubić ; Zlatko, Mihalić ; Davor, Šakić ; Tana, Tandarić ; Mario, Vazdar ; Robert, Vianello ; Valerije, Vrček ; Tin, Weitner (ur.).
Zagreb: Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, 2019. str. 33-33 (poster, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 1000722 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of machine learning for herbicide characterization
Autori
Pehar, Vesna ; Oršolić, Davor ; Stepanić, Višnja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book Of Abstracts
/ Darko, Babić ; Danijela, Barić ; Marko, Cvitaš ; Ines, Despotović ; Nađa, Došlić ; Marko, Hanževački ; Tomica, Hrenar ; Borislav, Kovačević ; Ivan, Ljubić ; Zlatko, Mihalić ; Davor, Šakić ; Tana, Tandarić ; Mario, Vazdar ; Robert, Vianello ; Valerije, Vrček ; Tin, Weitner - Zagreb : Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, 2019, 33-33
ISBN
978-953-6076-51-2
Skup
Computational Chemistry Day 2019
Mjesto i datum
Zagreb, Hrvatska, 11.05.2019
Vrsta sudjelovanja
Poster
Vrsta recenzije
Domaća recenzija
Ključne riječi
herbicides ; machine learning ; ADME ; toxicity
Sažetak
Herbicides are chemical molecules used for destruction of weeds. Massive usage of herbicides has resulted in two global problems: increase in weed resistance and harmful impact of human health [1, 2]. In order to facilitate development of novel, more specific herbicides and of strategies for impeding the weed resistance, we have carried out extensive in silico analysis of the set of herbicides. Herein, we present results revealing links between structural, physicochemical, ADME (Absorption, Distribution, Metabolism, Excretion) and toxic features for herbicides (Figure 1). The analysis has been done by using proper machine learning approaches. References: [1] A. Forouzesh, E. Zand, S. Soufizadeh, S. S. Foroushani, Weed Res. 55 (2015) 334-358. [2] V. I. Lushchak, T. M. Matviishyn, V. V. Husak, J. M. Storey, K. B. Storey, EXCLI J. 17 (2018) 1101-1136.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Ustanove:
Institut "Ruđer Bošković", Zagreb